	Student's Name:		
day & time:	Date:		
<u>e</u>	Induction (E6) - Data Sheets esults on the data sheets in ink.		
ty 1: Voltage Induction Usi	ing a Magnet (1.5 j		
tool and select the mean	moving (i.e., static magnetic field). Click on the Statisti value. $\mathcal{E}=\underline{\qquad} \qquad (\qquad)$		
	and select the maximum value.		
Measure the maximum value $\mathcal{E}_{max} = $ (S _{max} of the induced <u>emf for slowly moving magnet</u> :		
re this result with the result for A	Activity 1.3. Explain the difference (use Faraday's Law)		
5 , ,	out of the coil (<u>magnet reversed</u>). Induced voltage vs. time dependence after reversing to		
	Electromagnetic Write all restrict to 1: Voltage Induction Use Magnet inside the coil, but not and select the mean The average (mean) induced en Move the magnet (once) in and Measure the maximum value \mathcal{E} Click on the Statistics tool $\mathcal{E}_{max} = $		

Activ	vity 2: Voltage Induction Using a Coil with Current (2 p.)
2.3.	DC current in the primary coil.
	What is the average (mean) value of the induced emf in the secondary coil? Click on the Statistics tool and select the mean value.
	$\boldsymbol{\mathcal{E}}_{\mathrm{av}} = \underline{\hspace{1cm}}$ ()
2.5.	AC current, $f = 200$ Hz in the primary coil.
	What is the maximum value of the induced emf in the secondary coil? Click on the Statistics tool and select the maximum value. Print a copy of this graph.
	$\boldsymbol{\mathcal{E}}_{\max} = \underline{\hspace{1cm}} \hspace{1cm} (\hspace{1cm})$
	Measure period and frequency of the induced emf. Use the "Coordinates" tool select "Multi-Coordinates" option.
	f=()
	What is this frequency relative to the frequency in the primary coil?
2.7.	AC current, $f = 100$ Hz in the primary coil.
	What is the maximum value of the induced emf in the secondary coil?
	$\boldsymbol{\mathcal{E}}_{\max} = \underline{\hspace{1cm}} (\hspace{1cm})$
	What is the frequency of the induced emf in the secondary coil?

	$f = \underline{\hspace{1cm}}$ ()				
	What is this frequency of the induced voltage relative to the frequency in the primary coil?				
2.8.	How does the change in frequency change the amplitude of the induced emf? Please explain!				
	<u>Hint:</u> how does lowering the frequency affect the Δt in the formula $\mathcal{E}(t) = -\frac{\Delta \Phi_B}{\Delta t}$?				
2.9.	AC current, $f = 400$ Hz in the primary coil.				
	What is the maximum value of the induced emf in the secondary coil?				
	$\boldsymbol{\mathcal{E}}_{ ext{max}} = \underline{\hspace{1cm}} \hspace{1cm} (\hspace{1cm})$				
Activ	vity 3: Transformers and Coils (2 p.)				
3.2.	What is the maximum value of the induced emf for the two 400-turn coils (>10 cm apart)?				
	Induced voltage (coils separated) $\mathcal{E}_{\text{max}} = $ ()				
3.3.	What is the maximum value of the induced emf for the two 400-turn coils moved as close as possible together?				
	Induced voltage (coils together) $\mathcal{E}_{\text{max}} = $ ()				
	How the mutual inductance M of these two coils has changed compared to 3.2? Check the <i>Theory</i> section.				
	Mutual Inductance M: increased / decreased / remained the same (circle one)				
3.4.	What happened to the induced emf when the magnetic steel frame was used? (i.e., did it increase or decrease)?				
	Induced voltage (with magnetic steel frame) $\mathcal{E}_{\text{max}} = $ ()				

	xchange the #1 (the one connected tray 800-turn coil. Keep the magneti		erminals) 400-tı	urn coil with the
3.6. F	or the 800-turn primary (#1) coil a	nd the 400-turn s	secondary (#2)	coil:
	#1 (primary) coil voltage =		()	
	#2 (secondary) coil voltage =		()
	that the ratio of secondary coil voltage $\frac{\text{oltage}}{\text{urns}} = \frac{\#2 \text{ voltage}}{\#2 \text{ turns}}$ for an ideal trace $\frac{\text{secondary coil voltage}}{\text{primary coil voltage}} = \frac{\#2 \text{ voltage}}{\#2 \text{ turns}}$	nsformer?	il voltage accor	ding to the formula:
appro	or the 800-turn primary (#1) coil and opriate choice: the new induced emf is HIGHER			
• Is	it a STEP-UP or STEP-	DOWN tra	insformer?	
	onnect the coil #2 to the OUTPUT te., swap the cables).	erminals and the	coil #1 to the A	nalog Channel A
3.8. F	or the 400-turn primary (#1) coil a	nd the 800-turn s	secondary (#2)	coil:
	#1 (primary) coil voltage =		()
	#2 (secondary) coil voltage =		(()
Calcu	ulate the ratio of secondary coil volta	ge to primary co	il voltage accor	ding to the formula:
#1 ve	$\frac{\text{oltage}}{\text{oltage}} = \frac{\#2 \text{ voltage}}{\#2 \text{ voltage}} \text{ for an ideal tra}$	nsformer?		
#1 t	urns #2 turns			
	$\frac{secondary\ coil\ voltage}{primary\ coil\ voltage} = \underline{\hspace{1cm}}$			

For the 400-turn primary (#1) coil and the 800-turn secondary (#2) coil, <u>circle</u> the appropriate choice:

- The new induced emf is **HIGHER** or **LOWER** than the 400/400 arrangement.
- Is it a **STEP-UP** or **STEP-DOWN** transformer?

Complete the lab report and return it to the lab TA.